8088 Assembler Language Programming: The IBM PC

MOV AL, OFDH
OUT 21H,AL

Keep in mind that the state of the interrupt flag within the 8088 will ulti-
mately determine whether or not any interrupt signal is received.

The second 8259 programming action that we must be concerned with is
the signaling of the end of an interrupt service routine. This is accom-
plished by sending the “‘end of interrupt”” (EOI) command, represented by
20H, to the interrupt command register within the 8259. Coincidentally,
this one-byte register is accessed via i/0 port 20H. That is all there is to
controlling the interrupt mechanism! A complete example will appear later
in this chapter.

THE 8255 PROGRAMMABLE PERIPHERAL INTERFACE

The 8255 is a general-purpose i/o interface chip that can be configured in
many different ways. It is used on the system board to support a variety of
devices and signals. These include the keyboard, speaker, configuration
switches, and several other signals.

The chip contains three ports, called PA, PB, and PC. These are mapped
to i/0 addresses 60H, 61H, and 62H, respectively. In addition, there is a
one-byte command register on the chip, accessed via i/0 address 63H. On
power-up, the BIOS initializes this chip by sending a value of 99H to the
command register. This configures the 8255 so that PA and PC are consid-
ered input ports and PB is considered an output port. The meaning of each
port is defined in Fig. 5-4. Note that additional logic on the system board
allows us to select alternate inputs to ports PA and PC by setting certain
bits in output port PB. In addition, we can read back the last value that
was written to port PB by performing an input operation on port PB.

Fig. 5-5 gives an example of how we might make use of this hardware to
read the settings of the configuration switches. There are two configuration
switches on the system board; each can be set manually to represent any
one-byte value. They are normally set up to indicate the various hardware
options installed in the Personal Computer system. If, for example, our pro-
gram needed to know how many disk drives were attached to the system,
it could examine the two high-order bits of switch 1. This is accomplished
by the program instructions of Fig. 5-5. Note that to enable the configura-
tion-switch information onto port PA, we must first set bit 7 of port PB.

THE KEYBOARD

The system board provides an interface to the Personal Computer key-
board via the interrupt mechanism and ports PA and PB of the 8255 chip.
This hardware is normally supported and controlled by programs running
in the BIOS so that we do not have to be concerned with it. We simply

94

The PC System Board

7 6 5 4 3 2 1 0
INPUT PORT PA(BOH): l KEYBOARD SCAN CODE IFPBBIT7=0

OR

e

CONFIG SWITCH 1 IF PBBIT 7=1

1t T
SWLE SWLT SWL6 SWLS SWI4 SWI3 SW12 Swil
bbb

UNUSED
NUMBER TYPE AMOUNT NON
OF DisK OF OF RAM DISK
DRIVES DISPLAY ON SYSTEM SYSTEM
BOARD

I
iN QUTPUT PORT PB (61H): l !]

TIMER 2 GATE
SPEAKER DATA
SELECT SOURCE FOR PC BITS 0-3

G=TURN ON CASSETTE MOTOR

0=ENABLE RAM
0==ENABLE ERROR SIGNALS FROM EXPANSION SLOTS

0==DISABLE KEYBOARD CLOCK

SELECT SOURCE FOR PA. ALSO, 1==XEYBOARD ACKNOWLEDGE

7 § 5 4 3 2 1 0
INPUT PORT PC (62H): l ‘ l { } CONFIG SWITCH 2(1-4) IF PB BIT 2=1

T
{

|
4 SW23 W22 Swoy . AMOUNT OF RAM
w24 w23 sW2z swz1 - B

IF P8 BIT 2=0

SW2-8 SW2-7 Sw26 SW25
et
SPARE

CASSETTE DATA INPUT
TIMER 2 QUTPUT

1=ERROR IN EXPANSION SLOTS
1=PARITY ERROR

Fig. 5-4. 8255 port allocations.

access the keyboard via BIOS INT 16H, as shown in the last chapter. By
understanding the hardware, however, we can write our own keyboard-
support software, with certain interesting advantages.

95

8088 Assembler Language Programming: The IBM PC

The PC System Board

I AL, HIH sBET FPRESENT VALUE OF PORT MR
R AL, 80H 1FORCE BIT 7 ON
QuT &lH, AL s BET FORT FR BIT 7 = 1 &

H CONFIG BW1 NOW GATED TO FORT PA
IN Al &OH s READ FPORT FA = CONFIG SWITCH 1
NOT Al 3 INVERT RBITS
MoV Clé s BET UFR BHIFT AMOUNT
SHR AL, Ol 3 ISOLATE RITEH 7.6 OF AL

s NOW AL = NUMBER OF DISK DRIVES ATTACHED TO SYSTEM,

;: A8 OBTAIMED FROM COMFIG SWITCH 1, FOSITIONS 8,7.

Fig. 5-5. Reading the configuration switches.

Within the keyboard itself is a small microprocessor that scans for and
detects any change in state of the keys. This processor receives its basic
power and clock signals from the system board. We can disable the clock
signal going to the keyboard by setting bit 6 of port PB to 0. This will pre-
vent the keyboard from operating. In addition, we can send an acknowl-
edge signal to the keyboard by setting bit 7 of port PB to 1. To ensure that
the keyboard is properly enabled, we must set bits 7 and 6 of port PB to O
and 1, respectively. In this state, the keyboard will generate an interrupt
signal (IR@1) whenever any key is depressed or released. It will then trans-
mit a one-byte scan code to the system board and wait for the acknowl-
edge signal to be returned. The scan code will be a number between 1 and
83 that uniquely identifies which key changed state (there are 83 keys on
the keyboard). The high-order bit (bit 7) of the scan code indicates whether
the key was depressed or released. It will be O if the key was depressed,
.and it will be 1 if the key was released. Fig. 5-6 identifies the scan code
associated with each key on the keyboard.

It is the responsibility of the keyboard-support software to detect the key-
board interrupt and to respond to it as follows. First, the scan-code value
transmitted to the system board must be obtained by reading from 8255
port PA. Then, the acknowledge signal must be sent back to the keyboard
by momentarily setting bit 7 of port PB. The scan code itself may be inter-
preted in any manner desired. Thus, the meaning of each key can be
defined, or even dynamically changed, by software. A more important con-
sideration, however, stems from the fact that the keyboard interrupt
occurs asynchronously with respect to the main program running in the
computer. What this means is that the striking of a key (and its subse-
quent handling by the keyboard-support software) can occur at any time,
and it is totally independent of when the main program may wish to
receive keyboard input. Our keyboard support routine is therefore required
to buffer, or save, any keyboard input that it receives. To dccomplish this,
we employ a '‘first-in, first-out’” buffer, also referred to as a circular queue.

96

FUNCTION KEYS (LEFT SECTION)
"F1"—59 “F5" 63 9”67
“F2"-60 “F6"~64 "F10"~68
LETTER. RUMBER. AND PUNCTUATION KEYS (CENTER SECTION) “F37-61]
F4m—62 “F8"— 66
"1r-2 "y -21 " 40
273 Y22 gl
“3°—4 123 “\"-43
"4 -5 "0--24 7T -84
576 P25 X745 NUMERIC KEYPAD AREA (RIGHT SECTION)
-7 |v-26 "¢ - 4§
7°-8 =27 Y47 AR} 5 -6 "3 -81
vgr_g A"—30 g~ _48 8772 §7-77 0"~ 82
9710 §7-31 "N 49 973 "4-18 83
"0m-11 "Dr-32 "M —50 - -14 "1 -79
12 Fr-33 51 415 "2"-80
"=r-13 “Gr-34 " ~52
Q" -16 "H* 35 "f*—-53
w17 38 “ 3 {PrISC)— 55 CONTROL KEYS (CENTER AND LEFT SECTIONS)
.,E._ 113 t _g; SPACE BAR 57 Esc -1 Tab ~15 RightShit —54
“T7-20 wn_39 Backspace 14 Enter -28 Al -56
' ’ Mumlock -89 Cil -2 Copslock —58
ScrolfLock —70 LeRSHIFT —42

Fig. 5-6. Keyboard scan codes (listed in decimal).

Scan codes received from the keyboard are converted into the appropriate
ASCII character codes and then placed onto this queue. When the main
program wishes to obtain keyboard input, it calls an auxiliary routine
within the keyboard-support software. This routine takes the characters
off the queue, in the order in which they were received, and passes them
to the main program. The size of the queue determines the maximum
number of characters that can be buffered at any time. This represents the
number of keystrokes that you can ‘‘type ahead” of the main program.
In Fig. 5-7, a complete program that sets up and utilizes its own key-
board-support software is presented. The program is kept relatively simple
by omitting features normally handled by BIOS keyboard support, such as
upper/lower-case alphabetics, “‘shift”” and “'shift-lock” keys, and special
conirol-key combinations. The main program consists of two parts. Part
one modifies the interrupt-service—routine address table to point to our
own keyboard interrupt routine. It is also responsible for initializing the
necessary hardware interfaces by sending commands to the 8259 and
8255 chips. Once this has been accomplished, we enter part two, a simple
loop that reads keyboard input and displays it on the screen. The other

97

8088 Assembler Language Programming: The iIBM PC The PC System Board
ggg;g; 99550 FOREVER: CALL KBGET ;WAIT FOR A CHARACTER FROM THE KEYBOARD
; 90568 PUSH AX ;SAVE THE CHARACTER
gggig ; EXAMPLE OF CUSTOM KEYBOARD SUPPORT SOFTWARE #2579 CALL DISPCHAR ;DISPLAY THE CHARACTER RECEIVED
: 99588 POP AX ;RESTORE THE CHARACTER
20058 STACK SEGMENT PARA STACK 'STACK' !
! 20599 QP AL,ODH ;WAS IT A CARRIAGE RETURN?
20060 DB 256 DUP (9) 1256 BYTES OF STACK SPACE 90600 JNZ FOREVER ;BRANCH IF NOT
Q0373 STACK ENDS : 20618 MOV AL,@AH ;YES IT WAS, WE MUST ALSO DISPLAY...
ggggg f;ATA SEGMENT PARA PUBLIC 'DATA' ! @@62¢ CALL DISPCHAR ;...A LINE FEED!
0009 b T (5) IEN BYTE B ’ %23 ; JMP FOREVER ;STAY IN THIS LOOP FOREVER
@011¢ BUFPTRL DW o 7POINTS TO START OF BUFFER , @065¢ ; CALL KBGET TO WAIT FOR A CHARACTER TO BE RECEIVED FROM
@012¢ BUFPTR2 DW g ; POINTS TO END OF BUFFER ' #0660 ; THE KEYBOARD. THE CHARACTER IS RETURMED IN REG AL.
09130 ; NOTE: WHEN BUFPTRL = BUFPTR2 , THEN THE BUFFER IS EMPTY. 00670 KBGET PROC NEAR
02147 ; SCANTABLE CONVERTS SCAN CODES RECEIVED FROM THE KEYBOARD
; 90680 PUSH BX ;SAVE REGISTER BX
%158 H INTO THEIR CORRESPONDING ASCII CHARACTER CODES: : 00699 CLL ;DISABLE INTERRUPTS
[l i 3
@016 SCANTABLE DB @,0, '1234567890~=",8,9 ; 99708 MOV EX,BUFPTRL :START OF BUFFER
o9176 DB QWERTYUIOPL]',@DH, 8 2718 oP BX, BUFPTR2 ;1S BUFFER EMPTY?
og18g DB ! ASDFGHIKL; ' ,9,9,0,9 -
' . @g728 JINZ KBGET2 3=>NO
90190 DB ZXCVBNM, ./ ,8,8,0 ! 99739 STI ; RE-ENARLE INTERRUPTS
20200 DB ''',9,0,9,0,9,9,9,9,9,9,9,8,9 : 20746 POP BX ;RESTORE REG{STER BX
2921¢ DB ' 789-456+1230. : 209759 JvP KBGET FWAIT UNTIL SOMETHING IN BUFFER
gggg DATA ENDS' i 90769 ; THERE IS SOMETHING IN THE BUFFER, GET IT :
; , 09773 KBGET2: MOV AL, [BUFFER+EBX] ;GET CHAR AT BUFFER START
29243 CODE SEGMENT PARA PUBLIC 'CODE ; o788 INC BX ; INCREMENT BUFFER START
90250 START PROC FAR , eg798 QP BX,10 - ;HAVE WE WRAPPED AROUND?
00268 ; 1 o089 JC KBGET3 ;BRANCH IF NOT
202730 ; STANDARD PROGRAM PROLOGUE ggslgd MW BX, 2 sYES, WRAP AROUND
20289 ; 20820 KBGET3: MOV BUFPTRL, BX ; INDICATE NEW START OF BUFFER
00299 ASSUME CS:CODE 90830 STI ;RE~-ENABLE INTERRUPTS
Cone Mor e o ee SRS ADOR | o010 RP B | RESTORE. LEGISTH Bt
‘ ; 90850 RET ;RETURN FROM KBGET
90320 PUSH AX :SAVE RET ADDR OFFSET (PSP+d) : 00869 KBGET ENDP
0033¢ MOV AX, DATA] i @a879 ;
90348 MOV DS,AX ;ESTABLISH DATA SEG ADDRESSABILITY 29880 ; KBINT IS OUR OWN KEYBOARD INTERRUPT SERVICE ROUTINE:
@p350 ASSUME DS:DATA 20899 ;
00369 ; INE 00999 KBINT PROC FAR
99378 ; PARTl: SETUP OUR OWN KEYBOARD INTERRUPT SERVICE ROUT @991 PUSH DS ;SAVE ALL ALTERED REGISTERS!|
20389 ; : Q992¢ PUSH BX
09399 CLI ;DISABLE ALL INTERRUPTS : @0938 PUSH AX
00408 MOV BX,d ‘ 790949 ;
00410 MOV ES,AX ;POINT EXTRA SEGMENT AT THE... ! 4 .
eyl =S ekt e ALDRRSS T gggzg ; ESTABLISH ADDRESSABILITY TO OUR DATA SEGMENT:
09439 MOV DI,24H ;OFFSET OF ENTRY FOR TYPE CODE @9H : 20978 MOV AX, DATA
00449 MOV BX,OFFSET KBINT ;OFFSET OF OUR SERVICE ROUTINE 99989 MOV DS BX
99458 CLD ;SET 'FORWARD' STRING OPERATIONS 90999 : !
0p460 STOSW ;PLACE IT IN THE TABLE 21000 - 3 .
doacs sTo G e OF OUR SERWIGE E gm?g ; READ THE KEYBOARD DATA AND SEND THE ACKNOWLEDGE SIGNAL:
@P480 STOSW ;PLACE IT IN THE TABLE Mg2g IN AL,60H ;READ KEYBOARD INPUT
00499 MOV AL,QFCH ;ENABLE TIMER AND KYBD IRUPTS +60H .
@193@ PUSH AX +SAVE KEYBOARD INPUT
9508 out 21H,AL ;WRITE INTERRUPT MASK leggg g1040 N AL,61H ;READ 8255 PORT PB
gggég ST JENABLE INTERRUPTS TO THE . 91250 OR AL,80H ;SET KEYBOARD ACKNOWLEDGE SIGVAL
; g1g6g OUT 61H,AL ;SEND KEYBOARD ACKNOWLEDGE SIGNAL
20530 :' PART2: READ FROM KEYBOARD AND DISPLAY CHARS ON SCREEN 91070 AND AL,7FH ;RESET KEYBOARD ACKNOWLEDGE SIGNAL
03543 ; 91980 OUT 61H,AL ;RESTORE ORIGINAL 8255 PORT PB

Fig. 5-7. Custom keyboard-support program.
Continued on next page.

Fig. 5-7 (cont). Custom keyboard-support program.

Continued on next page.

98 99

8088 Assembler Language Programming: The IBM PC

21099
21102
91118
21120
01139
01140
21150
g1169
91179
01180
91199
01200
21212
01220
21230
91240
31259
@1264
31278
91280
21290
91300

91320
91338
01349
31350
31369
31370
91389
91399
91400

g142a
21439
914490
01450
31460
01473
01483
21499
01509
21510
91520
21530
01540
01550
21569
g1579

@1319 ;

01410 ;

DECODE THE SCAN CODE RECEIVED:

e ne ws

POP BAX ;REGAIN THE KEYBOARD INPUT (AL)
TEST AL,80H ;IS IT A KEY BEING RELEASED?
JINZ KBINT2 ;BRANCH IF YES, WE IGNORE THESE

MOV BX,OFFSET SCANTABLE ;SCAN CODE - ASCII TABLE
XLATB ;CONVERT THE SCAN CODE TO AN ASCII CHAR
P . AL,O ;IS IT A VALID ASCII KEY?

J% KBINT2 ;

PLACE THE ASCII CHARACTER INTO THE BUFFER:

MoV BX, BUFPTR2 ;GET POINTER TO END OF BUFFER
MOV [BUFFER+EX],AL ;PLACE CHAR IN BUFFER AT END
INC B ; INCREMENT BUFFER END
P BX, 10 ;HAVE WE WRAPPED AROUND?
Jc KBINT3 ;BRANCH IF NOT
MOV BX,9 ;YES, WRAP AROUND
KBINT3: CMP BX, BUFPTRL ;IS BUFFER FULL?
Jz KBINT2 ;BRANCH IF YES, WE LOSE THIS CHAR
MOV BUFPTR2, BX ; INDICATE NEW END OF BUFFER

H

; NOW INDICATE “END OF INTERRUPT" TO THE INTERRUPT CONTROLLER:

H

KBINT2: MOV AL, 20H ;SEND "EOI" COMMAND...
ouT 20H, AL 700.TO 8259 COMMAND REGISTER
POP AX s RESTORE ALL ALTERED REGISTERS!!
POP BX
POP Ds
IRET ;RETURN FROM INTERRUPT

KBINT ENDP

; SUBROUTINE TO DISPLAY A CHARACTER ON THE SCREEN.
; ENTER WITH AL = CHARACTER TO BE DISPLAYED.
; USES VIDEO INTERFACE IN BIOS.
DISPCHAR PROC HNEAR
PUSH BX ;SAVE BX REGISTER
MOV BX, 8 ; SELECT DISPLAY PAGE ¢
MOV BAH, 14 ;FUNCTION CODE FOR 'WRITE'
INT 10H ;CALL VIDEO DRIVER IN BIOS
POP BX ;RESTORE BX REGISTER

RET RETURN TO CALLER OF 'DISPCHAR'
DISPCHAR ENDP
ST ENDP
CODE ENDS

END START

Fig. 5-7 (cont). Custom keyboard-support program.

100

The PC System Board

major component of the program is our custom keyboard-support soft-
ware. This also consists of two parts; they are KBINT, the keyboard inter-
rupt-service routine, and KBGET, called from the main program to obtain
keyboard input.

Let us look at the program in more detail. Statements 400 through 480
set the address of our own keyboard interrupt-service routine (KBINT) into
the appropriate entry in the interrupt-service—routine address table. Recall
that the keyboard interrrupt signal is sent to the IRQ1 input of the 8259.
The 8259 has been programmed to identify this interrupt source with a
type code of 09H. The correct address-table entry therefore begins at phys-
ical address 09H*4, or 00024H. Note that we disable interrupts (CLI) before
altering the data in the address table. A catastrophic error could occur if
an interrupt were to be received while the address table is being modified.
Once the address table is modified, we program the interrupt-mask register
of the 8259 to allow interrupts only from lines IRQO and IRQ1 (the timer
and the keyboard, respectively). We then enable interrupts (STI) and enter
the second part of the main program.

The second part (statements 550 through 630) is an infinite loop that
calls routine KBGET to obtain characters input from the keyboard. Each
character so received is echoed to the display screen by the DISPCHAR
routine that we developed in the last chapter. Note the special code provided
to detect the ENTER key (ASCII carriage return). This is necessary because
a carriage return sent to an output device should always be followed by a
line feed. If this is not done, we will find ourselves typing over the previous
line of text.

If we strike a key while this loop is running, a type O9H interrupt will
occur. This will cause our KBINT procedure to be activiated. As you may
recall, the 8088 interrupt response will also save the address of the instruc-
tion that was executing, save the flags, and disable further interrupts. The
first responsibility of KBINT is to save any additional registers that it will
use in servicing the interrupt (statements 910-930. It then establishes ad-
dressability to our data segment by loading the data segment address into
the DS register (statements 950-980). Although not actually necessary for
this example, this is a wise precaution. In general, when we receive control
at an interrupt service routine, we do not know where that control came
from. We therefore cannot be certain of the contents of any register (in this
case, the DS register).

KBINT now proceeds to read in the scan code of the key that was de-
pressed and send back the acknowledge signal (statements 1000 through
1080). If the scan code indicates that a key was being released (bit 7 = 1),
then no further action is taken (statements 1130 and 1140). Otherwise,
the XLATB instruction is used to convert the scan code into its correspond-
ing ASCII character. The XLATB instruction requires that BX point to a

101

8088 Assembler Language Programming: The IBM PC

translation table in the data segment. We therefore load BX with the offset
address of SCANTABLE, which we have defined in our data segment. For
each keyboard scan code that we wish to acknowledge, we have placed the
appropriate ASCII code value into the corresponding position in SCANTABLE.
Scan codes that we wish to ignore, such as those assigned to the function
keys, F1-F10, are translated into a value of zero. After the translation, we
test for a value of zero. If we have such a value, then the key is ignored
(statements 1170 and 1180).

Assuming a valid key has been struck, we now have its ASCII code in the
AL register. We must place this byte onto the circular queue so that it is
available to the main program. This is accomplished by statements 1220
through 1300. The queue itself is defined in the data segment, with the
name BUFFER. It has the capacity to hold up to ten keystrokes. Two point-
ers, named BUFPTR1 and BUFPTR2, are used to keep track of the data in
the queue. They point to the beginning and end of the valid data in the
queue, respectively. Data is added onto the queue by placing it at the po-
sition pointed to by BUFPTRZ, and then incrementing BUFPTR2. Data is
taken off the queue by removing it from the position pointed to by BUFPTR]I,
and then incrementing BUFPTR1. When both pointers are equal, this in-
dicates that there is no data in the queue. When incremented past the end
of the queue, each pointer “wraps around” back to the beginning of the
queue. This approach, illustrated in Fig. 5-8, ensures that we always re-
trieve data from the queue in the same order in which it was placed onto
the queue. Notice that, in our implementation, we simply ignore (lose) a
character if it is received when the queue is full.

Once the data has been placed onto the queue, we complete the interrupt
response by sending the “end of interrupt” signal to the 8259 (statements
1340 and 1350). We then restore all saved registers and return to the main
program, at its point of interruption, via an IRET instruction.

BUFFER. BUFFER: BUFFER: BUFFER:

BUFPTRI 0 BUFPTRI —om X BUFPTRI ——o-] X 0 BUFPTRI
BUFPTRZ BUFPTR? mornin BUFPTRZ .\’ Y BUFPTRZ % Y

Do o W D

0
1 i
H 2
3 3
4 4
5 5
6 §
7 7
8 3
9

9

QUEUE EMPTY ONE DATA VALUE, X, ANOTHER DATA VALUE, DATA VALUE X
PLACED ON QUELE Y. PLACED ON QUEUE REMOVED FAOM QUEUE

Fig. 5-8. Circular-queue operations.

102

The PC System Board

The main program relies on the KBGET routine (statements 650 through
860) to retrieve keyboard data from the circular queue. This routine waits
until then is some data in the queue (as indicated by BUFPTR1 not equal
to BUFPTR2). It than fetches that data, advances BUFPTR1, and returns
the data value to its caller. Note that we must disable interrupts while the
queue pointers are being manipulated. If this is not done, a keyboard in-
terrupt may occur while we are trying to take data off the queue. We cannot
allow data to be placed onto the queue at the same time that it is being
taken off the queue, because this could cause us to overlook a queue-full
condition.

If you type in this program, assemble it, and run it, you will be able to
type most characters on the keyboard and have them echoed on the dis-
play screen. The only control keys that will function are ‘‘Backspace” and
“Enter.”” Most other control keys will be ignored. Most important, how-
ever, is the fact that the control-key combinations CONTROL-BREAK and
CONTROL-ALT-DEL are totally disabled. These functions are normally
detected by the BIOS keyboard support. Since we have not provided such
detection in our own program, we have effectively ‘‘locked up” the
machine; the only way to exit from our program is to turn the machine off.
This demonstrates the power and control that an assembler-language
programmer can exert over his computer.

THE 8253 TIMER

The 8253 Timer chip can perform a number of different timing and/or
counting functions. Within the chip are three independent counters, num-
bered 0, 1, and 2. Each of these three timer channels can be programmed
to operate in one of six different modes, referred to as mode O through mode
5. Once they have been programmed, all of the channels can perform their
designated counting or timing operations simultaneously. As you can
imagine, some very sophisticated operations can be performed with this
device.

A block diagram of the 8253 is presented in Fig. 5-9. Note that the hard-
ware related to each timer channel is identical. Each channel contains a
16-bit latch register and a 16-bit counter register. Each channel also has
two dedicated input signals, called clock and gate, as well as an output
signal, out. In general, we program a count value into the latch register.
From there, it is transferred into the counter register. Each time a pulse
appears on the clock input, the value in the counter register is decremented
by one. When the counter register reaches zero, a signal is generated on the
out line. The mode to which we program the timer channel will determine
exactly how each of these operations takes place.

The 8253 is programmed by writing commands into its one-byte-wide
command register. In addition, each channel has a dedicated, one-byte—

103

